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 Abstract 

 While there has been substantial research conducted on the use of Ground-Based Lidar 

(GBL; i.e., Terrestrial Laser Scanners) in monitoring the static deformation of civil structures, 

there have been only a few studies on the use of GBL in monitoring the dynamic vibrations of 

structures, which is critical information for structural health monitoring (SHM). Robust GBL-

based vibration monitoring frameworks can address some of the limitations of traditional 

contact-based SHM frameworks, which include a limited number of sensors and the need for 

physical access to place instrumentation. The main objective of this study is to develop and 

comprehensively validate a novel end-to-end framework to monitor the dynamic vibrations of 

structures using GBL through extensive experimentation in a controlled laboratory environment. 

In this project, a novel two-step spatio-temporal algorithm was developed to extract the dynamic 

vibrations of structures from the dynamic point clouds. The framework leverages the Density-

based Spatial Clustering of Applications with Noise (DBSCAN) and change detection 

algorithms. The impact of several GBL-based parameters on the accuracy of the operational 

modal analysis results was investigated across six single-degree-of-freedom structures with 

unique natural frequencies. The GBL-based parameters included the resolution, quality, and 

point-to-point distance of the dynamic point clouds. Accelerometers and infrared-based sensors 

were used for the validation of GBL measurements and operational modal analysis results. This 

study concludes that GBL can be used reliably for remotely monitoring the dynamic response of 

structures at a high spatial resolution. However, further research is warranted to evaluate the full 

extents of the proposed framework. 
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Chapter 1 Introduction 

1.1 Background 

The accelerated aging and deterioration of civil infrastructure systems are among the 

most pressing challenges to the US economy in the 21st century. According to the American 

Society of Civil Engineers’ 2021 Infrastructure Report Card [1], America’s civil infrastructure 

has a grade point average (GPA) of C- on an A through F grade scale. A funding gap of ~$2.6 

trillion is needed over the next 10 years for the US civil infrastructure to achieve a GPA of B 

(i.e., good repair condition). To reduce this massive bill of repair and maintenance in the long 

run, there is a critical need to develop robust structural health monitoring (SHM) solutions that 

are capable of accurately detecting and quantifying structural deterioration at an early stage. The 

early diagnosis and repair of structural damage (i.e., preventative maintenance) can significantly 

reduce the long maintenance backlogs and prolong the service life of our nation’s infrastructure. 

Furthermore, due to the lack of funding available to repair all structures in need, SHM solutions 

can be used to quantitatively prioritize structures for repair and maintenance based on their 

operational condition and health.  

Analysts commonly rely on vibration-based structural health monitoring (SHM) methods 

to evaluate the operational conditions of structures in service [2-9]. However, robust and 

accurate vibration data is critical for vibration-based structural health monitoring (SHM) 

applications, including damage diagnostics, prognostics, and model updating and calibration [2-

4]. Remote sensing technology (i.e., laser scanners and cameras) can be employed to conduct 

full-field dynamic monitoring of structures [14-37] and address some of the limitations of 

traditional contact-based techniques of SHM, including limitations on the number of sensors and 

the need for physical access to place instrumentation [3, 10-13].  



2 

 

Although vision-based frameworks (i.e., using stationary cameras or uncrewed aerial 

systems (UAS)) have shown promise in conducting full-field monitoring of structures, these 

frameworks are generally computationally expensive, sensitive to environmental conditions (i.e., 

illumination, fog, surface preparation), and oftentimes need high-contrast targets to be placed on 

the structure-of-interest [14-32].  

Ground-Based Lidar (i.e., GBL; also known as Terrestrial Laser Scanning) is a remote 

sensing platform that typically acquires dense 360-degree point clouds representing the position 

of objects within the unit’s line of sight in a Cartesian coordinate system. GBL has been widely 

used in monitoring the long-term deformation of large civil structures due to: 1) the high spatial 

resolution of the point clouds generated, 2) the robustness of the Lidar technology to 

environmental conditions such as illumination, fog and surface preparation, and 3) unlike camera 

systems, GBL has a long range of detection (i.e., up to 100’s of meters) [36-41]. However, GBL 

can be modified to acquire successive narrow point clouds at high frequency, which enables 

remote full-field dynamic monitoring of structures at a very high spatial resolution, as shown in 

Figure 1.1.  

 

 

Figure 1.1 Schematic of Lidar-based dynamic monitoring of structures 
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1.2 Problem Statement 

While there has been substantial research conducted on the use of GBL in monitoring the 

static deformation of civil structures, there have been only a few studies on the use of GBL in 

monitoring the dynamic vibrations of structures [36-41]. Previous studies highlight promising 

results for quantifying structural vibrations from GBL, however, several research gaps remain. 

First, GBL-based dynamic monitoring has not been validated beyond a few case study structures. 

To more adequately reflect the range of civil infrastructure, the GBL-based dynamic monitoring 

technology needs to be evaluated across a broad range of dynamic properties that represent typical 

civil infrastructure systems while using traditional and reliable sensing modalities for validation. 

Second, the impact of lidar-based variables (i.e., quality, resolution and point-to-point distance of 

dynamic point clouds) on the accuracy of the results has not been thoroughly investigated. Third, 

methods for processing dynamic point clouds are few and they do not scale well to different use 

cases. This project aims to address these gaps through the development and validation of end-to-

end frameworks to monitor the dynamic response of structures using GBL. 

1.3 Scope and Objectives 

The objectives of this study are: 1) develop a novel spatio-temporal framework to 

autonomously extract the dynamic vibrations of the structure of interest from the dynamic point 

clouds; 2) extensively investigate the robustness of GBL-based dynamic monitoring across a range 

of structures with various dynamic characteristics under different lidar variables; and 3) validate 

GBL OMA results using infrared-based sensors and accelerometers. 
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1.4 Report Organization 

The report is organized as follows: 

• Chapter 2: discusses the prior efforts conducted in developing algorithms to detect 

change in point cloud and the use of GBL to monitor the dynamic response of 

structures  

• Chapter 3: proposes an end-to-end framework for monitoring the dynamic 

response of structures using FARO x130. The chapter includes the specifications 

of the lidar dynamic setup used in this report. End-to-end spatial clustering and 

voxelization as well as change detection algorithms for the processing of dynamic 

point clouds are discussed in detail. 

• Chapter 4: discusses the extensive experimental program used for the validation 

of the proposed framework. The experimental results were compared to those of 

accelerometers and an optical motion tracking system to evaluate the robustness of 

the proposed GBL-based dynamic monitoring framework. 

• Chapter 5: discusses the key findings of the report and proposes future work. 
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Chapter 2 Literature Review 

The literature review section discusses prior research efforts conducted in the areas of 1) 

development of change detection algorithms, and 2) the use of Ground-based Lidar to monitor the 

dynamic response of structures. 

2.1 Change Detection Techniques 

Change Detection (CD) is the process of identifying differences between multi-temporal 

remotely sensed datasets (i.e., images/videos and point clouds) of an object. CD techniques are 

very critical for meaningful and accurate interpretations of the differences between multi-temporal 

remotely sensed datasets [44]. Change detection techniques are widely used in several applications 

(i.e., structural monitoring, geomorphology, urban and forest inventory). Terrestrial Laser 

Scanners (TLS), Mobile Laser Scanners (MLS), and ALS. Generally, there are two main 

approaches for CD: 1) direct comparison and 2) post-classification comparison (PCC). The direct 

comparison relies on the comparison between raw datasets collected at different time epochs after 

registration without classification or object/feature detection. On the other hand, PCC relies on a 

comparison between already classified datasets [44, 45], which requires additional processing 

steps before applying change detection techniques. Change detection techniques can be based on 

1) algebra, 2) transformation, 3) classification, 4) advanced models, 5) GIS, 6) visual analysis, or 

7) other change detection techniques [46]. In addition, Mishra et al. [47] and Coppin et al. [48] 

reviewed and summarized the change detection techniques and frameworks used in detecting 

changes on the surface of the earth and ecosystem, respectively.  

For direct-comparison-based CD approaches, point-to-point, point-to-surface, surface-to-

surface, or subset-to-subset (i.e., Hausdorff distance) distance is computed to quantify the amount 

of change occurred between point clouds. Girardeau-Montaut et al. [49] developed a framework 
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for direct comparison between two 3D lidar point clouds of the same scene, which were collected 

at different time epochs. The framework was based on partitioning the point clouds into octree 

structures to significantly reduce the computation cost and time. Three different strategies of CD 

calculations were evaluated: 1) the average distance between points, 2) best-fit plane orientation 

and 3) Hausdorff distance. The results showed that the Hausdorff distance outperformed the other 

two methods, and the octree-based framework significantly reduced the computation time. Lague 

et al. [50] developed a robust CD technique “Multiscale Model to Model Cloud Comparison” 

(M3C2) for direct comparisons between point clouds in an effort to address the limitations other 

CD techniques encounter, such as surface roughness-related errors. M3C2 does not include point-

cloud meshing to avoid the loss of roughness and detailed topographical information and enhance 

the distance measurement process. Instead, in M3C2, the local distances between core points, 

which were subsets of points of the reference point cloud within a specific point-to-point spacing, 

the normal direction were computed with the incorporation of local roughness information. M3C2 

was tested against various closest-point algorithms, and the results showed that M3C2 was very 

sensitive to small surface changes and independent of point intensity and roughness. For PCC, the 

datasets need to be classified first using unsupervised or supervised techniques, then CD is 

computed between recognized objects or features or clusters instead of points, and this is 

commonly used in applications involving datasets collected using Aerial Laser Scanner (ALS) 

[45].  

Du et al. [51] developed an automatic change detection framework using old aerial image 

and new LiDAR data for detecting building changes in urban areas. Firstly, using aerial 

triangulation, the aerial images were registered and used to produce a dense point cloud. Then, the 

generated dense point cloud was co-registered with the LiDAR 3D point cloud using the Iterative 
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Closest Point (ICP) algorithm and resampled to a raster Digital Surface Model (DSM). The height 

difference and grey-scale similarity were computed as change indicators and the graph-cuts 

method was used for detecting the changes. Also, Pirasteh et al. [52] developed an algorithm for 

change detection and extraction of the building borders from point clouds collected by ALS. At 

first, the outliers were removed from the point clouds at different epochs, and then, the point clouds 

were co-registered and filtered. Then, the pre-processed and co-registered point clouds were 

converted into nDSM, where thresholding was applied to isolate buildings from the surroundings 

based on the altitude. After thresholding, detecting the changes that happened to buildings at two 

epochs became possible. The incorporation of Firefly and Ant Colony algorithms aided in the 

extraction of building borders. Furthermore, the efficiency of the proposed algorithm in extraction 

building boundaries was compared with the Mask Region-Based Convolutional Neural Network 

(R-CNN) algorithm using drone images. The results showed that the use of LiDAR data and the 

proposed algorithm gave better results than using the Mask R-CNN and drone images for the 

extraction of building boundaries. 

Aijazi et al. [53] developed and evaluated a super-voxel-based approach for a 

segmentation-based classification of 3D urban point clouds collected by LiDAR. The approach 

began with voxelization, where the 3D points in the point cloud were grouped in cubical voxels 

based on the distance between the points and their neighbors. Then, the voxels were transformed 

into super-voxels, by assigning properties (i.e., mean R, G, and B values, surface normal, mean 

laser reflectance intensity value, geometrical center of a voxel, etc.) to them based on their 

constituting points. Afterward, the super-voxels of similar attributes were grouped together to form 

segmented objects using the link-chain method. The segmented objects were classified based on 

the comparison between the geometrical models and local descriptors of the segmented objects, 
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and pre-defined thresholds. Two metrics were developed to assess the segmentation and 

classification performances, and the results showed that the proposed approach achieved an overall 

accuracy in the vicinity of 90%.  

Furthermore, Mukupa et al. [54] reviewed the use of TLS in change detection and 

deformation monitoring of several civil structures (i.e., tunnels, buildings, dams, etc.), and 

evaluated the point-cloud registration techniques used in quantifying the deformation of those 

structures. The discussed CD techniques included point-to-point, point-to-surface, and surface-to-

surface-based deformation analyses. Several outstanding challenges of using TLS in the 

deformation monitoring of structures were identified, and a three-stage framework was developed 

to tackle those challenges. The three-stage framework consisted of the Multiscale Model to Model 

Cloud Comparison (M3C2) for change detection, piecewise alignment method, and block-to-point 

estimation for deformation analyses. 

2.2 GBL Applications in Dynamic Monitoring 

Despite the great success of lidar in monitoring static deformations, there have been only 

a handful of case studies that explored the use of GBL in monitoring the vibrations of civil 

structures. Gueguen et al. [33] monitored the dynamic response of a building using a coherent 

lidar. In this application, the lidar unit monitored the response of the building at a single location 

only and velocimeters were used for validation. Although the lidar measurements were 

significantly noisier than those of velocimeters, the operational modal analysis (OMA) results of 

lidar data were in good agreement with those of velocimeters. Moving beyond monitoring at a 

single point, Jatmiko and Psimoulis [34] monitored the dynamic response of a high-rise steel 

sculpture using a GBL operating at a fixed horizontal angle (i.e., vertical line-based scanning). The 

dynamic response along the height of the sculpture was captured at a sampling frequency of 24 
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Hz, and the natural frequency of the sculpture was estimated via modal analysis of the lidar data. 

More recently, Lee and Kim [35] monitored the response of two laboratory-scale structures using 

a low-cost multi-channel lidar. The authors developed several post-processing algorithms to 

correct the axes and tilt errors as well as data synchronization issues associated with this type of 

lidar unit. The lidar-based natural frequencies of the two structures were within 5% of those 

estimated from traditional sensing systems.  

Furthermore, alternative vision-based systems can incorporate depth information and 

generate remotely sensed 3D dynamic point clouds, such as RGB-D sensors (i.e., Time-of-Flight 

(ToF) imagers), which have been successfully used to generate dynamic 3D point clouds of 

laboratory structures for system identification in a recent 2022 study [42]. Furthermore, 

Chesebrough et al. [43] estimated the natural frequencies and mode shapes of a cantilever beam 

using dynamic 3D point clouds generated using a plenoptic camera (i.e., a camera system that 

captures the direction of the light entered the camera to make depth measurements). 

2.3 Summary and Knowledge Gaps 

Previous studies highlight promising results for quantifying structural vibrations from 

GBL, however, several research gaps remain. First, GBL-based dynamic monitoring has not been 

validated beyond a few case study structures. To more adequately reflect the range of civil 

infrastructure, the GBL technique needs to be evaluated across a broad range of dynamic properties 

that represent typical civil infrastructure systems while using traditional and reliable sensing 

modalities for validation. Second, the impact of lidar-based variables (i.e., quality, resolution, 

point-to-point distance) on the accuracy of the results has not been thoroughly investigated. Third, 

methods for processing dynamic point clouds are few and they do not scale well to different use 

cases. 
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Chapter 3 Lidar Framework for Dynamic Response Extraction 

This chapter presents the dynamic lidar setup used in this study and describes the proposed 

end-to-end frameworks to process the dynamic point clouds autonomously for civil system 

identification applications. 

3.1 Equipment and Data Acquisition  

In this study, a phase-based FARO Focus3D x130 laser scanner mounted on a helical 

adapter was used to acquire the dynamic response of structures remotely, as shown in Figure 3.1. 

The helical adapter allows the scanner’s mirror to rotate vertically only at a fixed horizontal angle, 

which is known as the helical scan mode. The vertical mirror’s field-of-view is from −150° to 

+150° with a scanner range of 130 m. Helical scans facilitate continuous line-based scanning 

without time delay (i.e., dynamic monitoring), where the scanner’s sampling frequency 

corresponds to the total number of revolutions of the vertical mirror per second. Therefore, remote 

full-field monitoring of structures can be conducted through helical scans, where each point in the 

resulting dynamic point cloud is likened to a traditional sensor placed on the structure-of-interest. 

The resulting helical scan file consists of a series of sequentially time-stamped 2D point clouds 

(i.e., scanlines) of its field of view, which corresponds to the total number of complete revolutions 

done by the scanner’s vertical mirror. The time-stamped scanlines are extracted from the original 

helical scan file using the open-source FARO Open software to generate a dynamic point cloud. 

The scanline files store the time stamp (i.e., automation time) of each data point acquired with a 

time resolution of 1μs as well as the position of each data point in the cartesian coordinate system 

format where Y is the horizontal distance from the scanner and Z is the height. 
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Figure 3.1 Lidar scanner and helical adapter 

 

3.2 Dynamic Point Cloud Processing  

A novel two-step spatio-temporal algorithm was developed to identify and extract the 

structural vibration information from the background scene within the helical scan files (i.e., 

dynamic point clouds). An overview of this algorithm is shown in Figure 3.2. The algorithm starts 

with spatial clustering and voxelization, where voxelization is the process of partitioning the point 

cloud into a regular three-dimensional grid to facilitate point tracking and monitoring. Each 

partition of this three-dimensional grid is referred to as a voxel. Then, a change detection algorithm 

extracts the dynamic response of each voxel which is a displacement time history at a given point 

on the structure. A dynamic point cloud is an array of sequentially time-stamped 2D point clouds, 

where clustering and voxelization of each 2D point cloud independently is computationally very 

demanding. To cluster and voxelize the entire dynamic point cloud efficiently, the proposed 

algorithm relies on clustering and voxelizing a reference point cloud (i.e., 2D point cloud at time 

𝑡𝑡 = 0) rather than processing every 2D point cloud in the dynamic point cloud independently. The 

spatial clustering and voxelization algorithm is presented in Figure 3.3. It can be assumed that real-

world civil structures typically do not undergo large rigid-body displacements. Hence, it is 

expected that structural vibrations (i.e., small dynamic displacements relative to the structure’s 
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geometry) will not lead to significant changes with respect to the distance between the structure-

of-interest and GBL during dynamic monitoring. Therefore, the algorithm assumes that the row 

indices of the datapoints of the structure-of-interest are nearly identical across all the 2D point 

clouds generated over the duration of the test, which justifies clustering and voxelizing the entire 

dynamic point cloud based on the initial reference point cloud. For simplicity, each row in a 2D 

point cloud can be envisioned as a single lidar channel that measures the distance to a point in 

space.  

 

 

Figure 3.2 Overview of the end-to-end framework for processing dynamic point clouds 

 

Figure 3.3 details the algorithm that clusters and voxelizes the reference point cloud, where 

the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is utilized 

to partition the point cloud into clusters based on spatial density. The DBSCAN algorithm was 

chosen as it is suitable and robust for large spatial databases with noise, which applies to this study 

[55]. Then, each of the point cloud’s clusters is further partitioned into voxels using the k-nearest 
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neighbor (KNN) algorithm. The voxelization step excludes the noise clusters determined by the 

DBSCAN algorithm. The clustering and voxelization processes are highly dependent on the 

minimum number of points per cluster/voxel and the neighborhood search radius, as shown in 

Figure 3.2. The neighborhood search radius for clustering is chosen based on the gaps between the 

objects and the structure-of-interest in the point cloud, so these objects and the structure-of-interest 

can be easily separated and assigned into mutually exclusive clusters. With respect to voxelization, 

the neighborhood search radius can be determined based on the spacing between the neighboring 

points in the vicinity of the structure-of-interest, minimum number of points per voxel, and the 

level of spatial resolution required in the full-field system identification (e.g., a neighborhood 

search radius of 1 cm will result into studying the dynamic response of the structure-of-interest at 

a centimeter level). Regarding the minimum number of points criterion, it aims to reduce the 

amount of noise in both the clustering and voxelization steps, as increasing the number of points 

per cluster/voxel will enhance the results. Overall, the clustering and voxelization hyperparameters 

can be set by the analyst based on the spatial density of the dynamic point cloud in the vicinity of 

the structure-of-interest and the level of spatial resolution required. In this study, the minimum 

number of points per cluster and voxel was assigned to 5 and 2, respectively, and the neighborhood 

search radii were 30 and 5 cm for clustering and voxelization, respectively. These parameters were 

determined based on the size of the structure and scanner-based parameters considered in the 

experimental program. The spatial clustering and voxelization steps are necessary to create a 

higher level of data representation for the 2D point clouds, which allows analysts to smoothly 

isolate the structure-of-interest from the background. Analysts can easily use voxels along the 

structure-of-interest to individually study the dynamic response of any part of the structure-of-

interest for a careful assessment of the overall structural integrity at a high spatial resolution. The 
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proposed spatial clustering and voxelization algorithm is computationally efficient and easily 

scalable to monitor a wide range of civil infrastructure systems.  

The cluster and voxel indices of each datapoint in the reference 2D point cloud are used to 

cluster and voxelize the entire dynamic point cloud efficiently, as shown in Figure 3.4. To extract 

the dynamic response of each voxel (i.e., change detection), the median of the points in a voxel at 

any time “𝑡𝑡” is compared to the corresponding point in the reference frame (i.e., 2D point cloud at 

time 𝑡𝑡 = 0) to quantify the dynamic motion, as detailed in Figure 3.3. Only the medians of the 

voxels were tracked in the change detection step, rather than all the voxel points, to make the 

dynamic motion extracted more robust to the scanner’s noise. Voxels with dynamic displacements 

greater than 0.5 m were excluded from the analysis as these correspond to non-structural objects 

that abruptly moved during the dynamic monitoring. The change detection algorithm determines 

the dynamic motion of each voxel in both the Y and Z directions. The final output is a displacement 

time history of each voxel along the structure-of-interest.  
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Figure 3.3 Spatial clustering and voxelization algorithm, where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑖𝑖𝑖𝑖𝑖𝑖: cluster indices of 
each data point in the reference point cloud ( 𝑅𝑅𝑅𝑅𝑅𝑅_𝑃𝑃𝑃𝑃), 𝜀𝜀: neighborhood search radius for 
clustering, 𝑀𝑀𝑀𝑀𝑀𝑀_𝑝𝑝𝑝𝑝𝑝𝑝: minimum number of neighbors to identify a core point in each cluster, 
𝑁𝑁_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: number of clusters in 𝑅𝑅𝑅𝑅𝑅𝑅_𝑃𝑃𝑃𝑃, 𝑉𝑉𝑉𝑉𝑉𝑉_𝑀𝑀𝑀𝑀𝑀𝑀_𝑃𝑃𝑃𝑃𝑃𝑃: minimum number of points in each 
voxel, 𝑉𝑉𝑉𝑉𝑉𝑉_𝑖𝑖𝑖𝑖𝑖𝑖: voxel indices of each data point in each cluster, 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣: neighborhood search 
radius for voxelization, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑃𝑃𝑃𝑃: core point in each voxel. 
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Figure 3.4 Change detection algorithm, where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑌𝑌: response history in the “Y” direction,  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑍𝑍: response history in the “Z” direction, and 𝑁𝑁_𝑣𝑣𝑣𝑣𝑣𝑣: number of voxels in the reference 

point cloud ( 𝑅𝑅𝑅𝑅𝑅𝑅_𝑃𝑃𝑃𝑃) 
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Chapter 4 Experimental Testing 

This chapter discusses the experimental program conducted to validate the proposed 

framework for dynamic measurements monitoring using GBL. The experimental data were 

processed in both the time and frequency domains to understand the impact of scanner- and 

structure-based parameters on the accuracy of the results. Statistical analyses were conducted to 

interpret trends in data, if present.  

4.1 Experimental Program 

The main objective of this section is to investigate the effects of structure- and scanner-

based parameters on the robustness of the proposed GBL-based dynamic monitoring framework 

through experimentation. A 2.45-m tall reconfigurable HSS 101.6×101.6×9.53 mm steel tower 

was used as the specimen in this study, where 304.8×76.2×50.8 mm steel rectangular weight plates 

were used to vary the dynamic properties of the steel tower during testing, as shown in Figure 4.1a. 

Figure 4.1b shows a sample of the tower’s helical point cloud generated at a given instant in time. 

The lidar scanner parameters considered include the resolution, quality, and point-to-point distance 

of the 2D point clouds generated.  
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Figure 4.1 (a) Helical scan setup, (b) helical point cloud 

 

Table 4.1 shows the quality and resolution combinations considered in the experimentation 

task of this study. The quality parameter refers to the number of measurements the scanner makes 

to confirm point data [56], where high quality (i.e., 4) indicates more accurate range measurements. 

However, the scan time becomes significantly longer and consequently the sampling frequency is 

significantly reduced for higher quality and resolution scan settings, since the sampling frequency 

is inversely proportional to quality and resolution, as shown in Table 4.2. Generally, the point-to-

point distance of a point cloud is defined as the distance between two neighboring points. Hence, 

varying the scan’s point-to-point distance will affect the density and the number of points (i.e., 

spatial resolution) scanned along the structure-of-interest, which may impact the final modal 

analysis. The point-to-point distance of the point cloud in the vicinity of the structure-of-interest 

is explicitly controlled by the point cloud’s resolution, the scanner’s height above the ground “H”, 

and the scanner’s standoff horizontal distance from the structure “B”. Hence, to extensively study 

the significance of the point-to-point distance parameter, four different combinations of H and B 
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along with six different scan resolutions were considered to populate the test matrix, as shown in 

Tables 4.1 and 4.2.  

 

Table 4.1 Test matrix: scanner height and horizontal distance parameters 

Scanner Height 

𝑯𝑯 [m] 

Horizontal Distance 

𝑩𝑩 [m] 

0.57 4 

1.35 8 
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Table 4.2 Test matrix: scanner-based parameters 

Quality Dynamic Point Cloud Resolution                                  

Scanner Sampling Frequency [Hz] 
 

Angular Increment/Point 

[°] 

No. of 

Points 

1 

0.0351 8544 95.31 

0.0176 17088 47.66 

0.0088 34176 23.83 

2 

0.0702 4272 93.75 

0.0351 8544 46.88 

0.0176 17088 23.44 

3 

0.1404 2136 95.31 

0.0878 3418 59.57 

0.0702 4272 47.66 

0.0351 8544 23.83 

4 

0.1404 2136 47.66 

0.0878 3418 29.79 

0.0702 4272 23.83 

 

To closely study the influence of the structure’s dynamic characteristics on the accuracy of 

the proposed framework, six single-degree-of-freedom (SDOF) configurations of the steel tower 

with unique natural frequencies were considered in the experimental program. The SDOFs’ natural 

frequencies range from 3.6 Hz to 7.8 Hz, which were meant to replicate the natural frequencies of 

typical civil infrastructure systems (e.g., bridges, buildings, etc.). Table 4.3 shows the details of 

each SDOF configuration. For each SDOF configuration, the scanner was used to monitor the free 

vibration response of the specimen for approximately 400 seconds. During each test, the specimen 

was subjected to an impulse load from a mallet at the top level approximately every 60 seconds 

for excitation. It shall be noted that the amplitude of excitation was not controlled throughout the 

experimental campaign. To validate the results of the GBL-based dynamic monitoring framework, 
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PCB 352C34 accelerometers, and an Optotrak Certus motion capture system (i.e., infrared-based 

sensors) were used in the experiments. The PCB 352C34 model has a sensitivity of (±5%) 100 

mV/g, measurement range of ±50g, and a frequency range of (±5%) 0.5 Hz – 10 kHz. The Optotrak 

system has a 3D accuracy of 0.1 mm, and was used in several previous studies to monitor the 

dynamic response of large-scale laboratory structures. The accelerometers and Optotrak markers 

were mounted on the specimen at three levels (i.e., 1.55, 1.82, and 2.45 m), and their sampling 

frequencies were 2048 and 128 Hz, respectively. 

 

Table 4.3 Test matrix: SDOF configurations of the tower specimen 

Configuration No. No. of Weight Plates 

Natural Frequency 

estimated via 

Accelerometers [Hz] 

1 24 3.69 

2 20 4.03 

3 16 4.45 

4 12 5.03 

5 8 6.01 

6 4 7.64 

 

4.2 Results and Discussion 

The main goal of this section is to validate the lidar results in light of the accelerometer 

and Optotrak results in both the time and frequency domains. For each test, the dynamic response 

of the voxels in the vicinity of the three height levels at which accelerometer and Optotrak sensors 

were placed, 1.55, 1.82, and 2.45m, were extracted using the novel two-step spatio-temporal 

algorithm developed. Figure 4.2 shows sample results of the spatial clustering and voxelization 

algorithms. The raw point cloud was clustered using a neighborhood search radius of 30 cm and a 
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minimum number of 5 points. These parameters were assigned based on the distance between the 

specimen and the neighboring objects in its vicinity, as 30 cm was sufficient to isolate the 

specimen’s cluster from the background. Figure 4.2b shows the clustering results, where each color 

represents a mutually exclusive cluster. Regarding voxelization, the neighborhood search radius 

was assigned to 5 cm, so the minimum number of points per voxel (i.e., 2) can be maintained 

across all GBL parameters while providing high-spatial resolution results. Figure 4.2c shows an 

example of the specimen’s voxelization results.  

Although the comparative analysis showed very similar results and trends across all the 

height levels and sensing modalities, only the middle voxels, accelerometers, and Optotrak 

markers (i.e., at the height level of 1.82 m) are presented in the following sub-sections for 

consistency and conciseness. The middle voxel was selected, rather than the top voxel, due to 

consistent capture across tests. The voxels at the top level were in the vicinity of a sharp corner of 

the structure, which resulted in the top voxels to be missing in a handful of tests. 

 

 
Figure 4.2 (a) Raw point cloud of the experimental setup, (b) spatially-clustered point cloud, (c) 
voxelized point cloud of the specimen 
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4.2.1 Dynamic Displacements  

Figure 4.3 shows an example of the tower displacement detected by the lidar and Optotrak 

during a typical test. The plot indicates that both the lidar and Optotrak displacements were in 

strong agreement. Although the lidar displacements were noisier than those of the Optotrak, both 

the lidar and Optotrak measured similar amplitudes at the beginning of each excitation, which 

demonstrates the accuracy of lidar dynamic measurements at higher levels of excitation and the 

capability of detecting sub-millimeter displacements. 

 

 
Figure 4.3 Sample time history of the vibration at the top of the steel tower under excitation 

 

4.2.2 Operational Modal Analysis  

4.2.2.1 Impact of Scanner-based Parameters 

This section aims to statistically analyze the effect of the previously introduced scanner 

parameters: resolution, quality, and point-to-point distance on the accuracy of the proposed GBL-

based dynamic monitoring framework. To quantify the impact of each of these parameters, the 

natural frequencies estimated via lidar (𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿), accelerometers (𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), and Optotrak (𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂) for 

each test were compared to one another. It shall be noted that the lidar measurements considered 

herein were not corrected with respect to those of the Optotrak (as discussed in the Displacement 

section), so the impact of lidar noise on the accuracy of the operational modal analysis results can 
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be studied independently of any signal denoising approaches. This is particularly useful to 

understand the potential impact of lidar noise in applications where reference displacement sensors 

might not be available (i.e., field monitoring of real-world structures). The natural frequencies 

were estimated by applying the classical peak-picking approach to the PSD plots of the processed 

data, where the PSD plots were generated using the Welch method (as explained in the Signal-to-

Nose section). Figures 4.4a and b show that all tests yielded at most 0.4% difference in natural 

frequencies with the large majority of tests estimating natural frequencies by lidar within 0.02% 

of both accelerometer-based and Optotrak-based estimates. This indicates that GBL mostly 

estimates the natural frequencies of civil structures with a three-point decimal accuracy, which is 

widely acceptable in civil engineering applications. Moreover, by closely analyzing Figures 4.4a, 

b, and c together, it can be concluded that the relative difference between lidar- and accelerometer-

based estimates was similar to those between the Optotrak and accelerometers. Therefore, these 

error levels are typical across different sensing modalities and are not unique to the GBL technique. 

The natural frequencies estimated via the accelerometers, Optotrak, and GBL for all the 

experiments are presented in the Appendix.  

 

 

Figure 4.4 System identification results: (a) lidar versus accelerometers, (b) lidar versus Optotrak, 
and (c) Optotrak versus accelerometers 
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Figure 4.5 shows the relative difference between the lidar- and accelerometer-estimated 

natural frequencies for each test plotted as a function of the resolution, quality, and point-to-point 

distance of the point cloud for each respective test. It should be noted that the maximum point-to-

point distance refers to the maximum distance between any two neighboring points along the 

height of the tower specimen, which changes based on the attributes of each respective test. Linear 

regression models and 𝑝𝑝-value analyses were used to understand the impact of each GBL 

parameter on the accuracy of the natural frequencies estimated via the GBL across all the 

experiments (see Tables 4.1, 4.2, and 4.3 for details on the test matrix considered herein). The 

results show nearly no correlation (i.e., 𝑅𝑅2 and 𝛽𝛽1 = ~0)  between any of the scanner parameters 

and the relative difference between the lidar- and accelerometer-estimated natural frequencies. 

Furthermore, the 𝑝𝑝-value analyses show that the relationships between the accuracy of the GBL-

based natural frequencies and the resolution, quality, and point-to-point distance of the point cloud 

are statistically not significant at a significance level of 1% (𝑝𝑝 > 0.01), as shown in Figure 4.5. 

These results suggest that the GBL-based parameters do not have an influence on the accuracy of 

the operational modal analysis, which indicates the robustness of the proposed GBL-based 

dynamic monitoring framework considering the conducted experiments. However, future field 

tests on structures of complex geometries and dynamical systems (i.e., bridges, buildings) with 

scans of larger maximum point-to-point distances are needed to rigorously examine the impact of 

the scanner parameters on the accuracy of the system identification results.  
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Figure 4.5 Summary results of scanner parameters: (a) resolution, (b) quality, and (c) maximum 
point-to-point distance along the tower specimen, where the dashed lines are trendlines estimated 

using linear regression 

 

4.2.2.2 Impact of Structure Natural Frequency 

The main objective of this section is to discuss the impact of the structure’s natural 

frequency on the accuracy of the proposed GBL framework. Similar to the previous section, the 

relative difference between the lidar- and accelerometer-estimated natural frequencies will be 

considered the accuracy metric. Linear regression models and 𝑝𝑝-value analyses were used to 

statistically analyze the results. Figure 4.6 shows the distribution of the relative difference as a 

function of the structure’s natural frequency estimated via the accelerometer (𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (i.e., ground 

truth), where the results show nearly no correlation (i.e., 𝑅𝑅2 and 𝛽𝛽1 = ~0). Furthermore, the 𝑝𝑝-

value analyses show that the relationship between the accuracy of the GBL-based natural 

frequencies and the structure’s natural frequency is statistically not significant at a significance 

level of 1% (𝑝𝑝 > 0.01), as shown in Figure 4.6. Hence, the results suggest that both the structure’s 

natural frequency has nearly no impact on the results’ accuracy for the tested specimen 

configurations (see Table 4.3).  
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Figure 4.6 Summary results of the natural frequency estimation discrepancies as function of 
structure natural frequency results 

 

Although the statistical analyses showed that the specimen’s natural frequency had no 

impact on the accuracy of the GBL results, the tested specimen configurations were mainly simple 

SDOF-like structures, which did not include the excitation of modes beyond the fundamental mode 

of vibration. Therefore, structures of more complex dynamic systems need to be tested to gain 

more insights into the impact of the structure’s dynamic characteristics on the results. This can be 

validated through field monitoring tests of real-world buildings and bridges, as such systems are 

difficult to replicate in the laboratory due to space limitations. 

4.2.3 Operational Deflected Shapes 

The frequency domain decomposition (FDD) method [57] was used to estimate the 

operational deflected shapes (ODS) of the tower specimen using the processed data of the 

accelerometers, Optotrak markers, and corresponding voxels at height levels: 1.55, 1.82, and 2.45 

m (i.e., measurement degrees-of-freedom). The estimated ODS were compared to one another 

across all the sensing modalities using the modal assurance criterion (MAC) [58] as per Equation 

2.  
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𝑀𝑀𝑀𝑀𝑀𝑀({𝜑𝜑𝑟𝑟}, {𝜑𝜑𝑠𝑠}) = �{𝜑𝜑𝑟𝑟}T{𝜑𝜑𝑠𝑠}�
2

({𝜑𝜑𝑟𝑟}T{𝜑𝜑𝑟𝑟})({𝜑𝜑𝑠𝑠}𝑇𝑇{𝜑𝜑𝑠𝑠})                                       (2) 

 

The MAC analysis aims to evaluate the similarity between the lidar-estimated ODS and 

their accelerometer and Optotrak counterparts, where MAC values closer to one indicate nearly 

identical ODS, and values closer to zero indicate totally dissimilar ODS. Figures 4.7a and b show 

the histogram plots of the MAC values computed between the accelerometer and lidar ODS and 

between the accelerometer- and Optotrak-based ODS, respectively. The plots show that the MAC 

values between the accelerometer- and lidar-based ODS were nearly identical to those between the 

accelerometers and Optotrak. Figure 4.7c shows samples of the estimated ODS, where the great 

agreement across all sensing modalities can be demonstrated.  

 

 

Figure 4.7 Summary results of Model Assurance Criterion: (a) lidar versus accelerometers, and 
(b) Optotrak versus accelerometers; (c) sample operational deflected shape 
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Chapter 5 Conclusions and Recommendations  

5.1 Conclusions 

Terrestrial Laser Scanners (GBL) can be employed to conduct full-field dynamic 

monitoring of civil structures for early damage detection and accurate finite element model 

updating applications. In this study, a novel end-to-end GBL-based dynamic monitoring 

framework was developed to monitor the dynamic response of civil structures remotely. The 

proposed framework was extensively investigated considering several scanner parameters (i.e., 

resolution, point-to-point distance, and quality) to monitor the free vibration response of six unique 

SDOF configurations in a controlled laboratory environment. In addition, an end-to-end novel two-

step spatio-temporal algorithm was developed to autonomously extract the structural vibrations 

from the helical point clouds of the structures-of-interest, which enables the scalability of the 

proposed framework. The Optrotrak Certus motion capture system and high-sensitivity 

accelerometers were used to validate the GBL OMA results. Analytical and finite element models 

were used to validate the full-field dynamic response of the GBL. The comprehensive comparative 

analyses in both the time and frequency domains showed that the GBL results (i.e., displacements, 

natural frequencies, and operational deflected shapes) strongly agreed with those of the 

accelerometers and Optrotrak across all scanner-based parameters and SDOF configurations of the 

tower specimen despite the higher background noise levels of the GBL data. Furthermore, the full-

field dynamic response of GBL was in great agreement with the high-fidelity mode shapes of the 

analytical and finite element models. The experimental results also highlight that the GBL was 

capable of detecting sub-millimeter structural vibrations, which indicates the potential of GBL to 

accurately monitor ambient vibrations of structures in the field. While the statistical analyses 

showed that GBL- and structure-based parameters had nearly no impact on the accuracy of the 
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GBL system identification results, it shall be noted that the specimen configurations considered in 

the experiments were SDOF-like structures with a relatively narrow range of natural frequencies 

(i.e., between 3.6 and ~8 Hz). The tested specimen configurations did not exhibit the excitation of 

modes beyond the fundamental mode of vibration. Also, the input excitations were impulsive and 

within the range of ±1 millimeter. While impulsive excitations can simulate the response of real-

world bridges in the field due to traffic, this type of excitation does not replicate the typical ambient 

vibration response (i.e., non-impulsive response histories) of buildings due to wind or live load. 

Therefore, further research is warranted on full-scale structures in the field to evaluate the full 

extents of the GBL capabilities for dynamic monitoring of civil structures with respect to both 

structure and scanner-based parameters, and the amplitude and type of excitation. 

5.2 Future Work 

The experimental results highlighted that the GBL was capable of detecting sub-millimeter 

structural vibrations, which indicates the potential of GBL to accurately monitor ambient 

vibrations of structures in the field. However, further research is warranted on full-scale structures 

in the field to evaluate the full extent of GBL capabilities for dynamic monitoring of civil structures 

with-respect-to both structure and scanner-based parameters. Also, frameworks need to be 

developed and validated to monitor the dynamic response of structures using lidar/depth cameras 

that are mounted on moving platforms (i.e., UAVs), as these have not been studied previously. 
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Appendix A Additional Experimental Results                                                                          

Table A.1 Accelerometer results for test configuration 𝐻𝐻 = 0.57m and 𝐵𝐵 = 4m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 5 6 

1 

8544 3.7013 4.0416 4.4624 5.0475 6.002 7.6075 

17088 3.6893 4.0514 4.4624 5.0495 6.0059 7.6138 

34176 3.6991 4.0514 4.4624 5.0495 5.9988 7.6064 

2 

4272 3.6991 4.0514 4.4624 5.0495 6.0017 7.6213 

8544 3.6991 4.0416 4.4624 5.0495 5.996 7.6035 

17088 3.6991 4.0416 4.4526 5.0495 5.9999 7.5948 

3 

2136 3.6979 4.0514 4.4624 5.0495 6.0001 7.5971 

3418 3.6991 4.0416 4.4624 5.0495 5.9969 7.5949 

4272 3.6991 4.0416 4.4624 5.0495 6.0008 7.5953 

8544 3.6991 4.0416 4.4624 5.0495 5.9969 7.6097 

4 

2136 3.6991 4.0514 4.4526 5.0495 6.0028 7.6006 

3418 3.6991 4.0416 4.4624 5.0495 6.0002 7.5879 

4272 3.6991 4.0416 4.4624 5.0495 5.9963 7.6043 
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Table A.2 Optotrak results for test configuration 𝐻𝐻 = 0.57m and 𝐵𝐵 = 4m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 5 6 

1 

8544 3.6913 4.0416 4.4624 5.0474 6.002 7.6072 

17088 3.6991 4.0416 4.4624 5.0495 6.0059 7.6018 

34176 3.6991 4.0416 4.4624 5.0495 5.9988 7.6064 

2 

4272 3.6991 4.0514 4.4624 5.0495 6.0017 7.6023 

8544 3.6991 4.0416 4.4624 5.0495 6.0057 7.603 

17088 3.6991 4.0416 4.4624 5.0495 6 7.6065 

3 

2136 3.6978 4.0416 4.4624 5.0495 6.0002 7.5967 

3418 3.6991 4.0416 4.4624 5.0495 6.0065 7.6066 

4272 3.6991 4.0416 4.4624 5.0495 6.0008 7.5952 

8544 3.6991 4.0416 4.4624 5.0495 5.9968 7.5976 

4 

2136 3.6991 4.0416 4.4624 5.0495 6.0026 7.6007 

3418 3.6991 4.0416 4.4624 5.0495 5.9998 7.6054 

4272 3.6991 4.0416 4.4624 5.0495 6.0058 7.6041 
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Table A.3 GBL results for test configuration 𝐻𝐻 = 0.57m and 𝐵𝐵 = 4m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration 

1 2 3 4 5 6 

1 

8544 3.6913 4.0415 4.4622 5.0475 6.0018 7.6071 

17088 3.6986 4.0407 4.4622 5.0487 6.0051 7.6015 

34176 3.6979 4.0501 4.4609 5.0493 5.9977 7.604 

2 

4272 3.6989 4.051 4.4621 5.0493 6.0014 7.6015 

8544 3.6982 4.0411 4.4614 5.0583 6.0051 7.5918 

17088 3.6977 4.041 4.4611 5.0491 5.9989 7.5942 

3 

2136 3.698 4.0413 4.4622 5.0492 6.0095 7.6141 

3418 3.6987 4.0508 4.4623 5.0495 5.9965 7.5828 

4272 3.6985 4.0407 4.4617 5.0492 6.0004 7.5955 

8544 3.698 4.0403 4.4617 5.049 5.9955 7.5969 

4 

2136 3.6984 4.0411 4.4618 5.0492 6.0025 7.5996 

3418 3.6981 4.0412 4.4613 5.0481 5.9992 7.6068 

4272 3.6976 4.0505 4.4608 5.0474 6.0059 7.6045 
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Table A.4 Accelerometer results for test configuration 𝐻𝐻 = 1.35m and 𝐵𝐵 = 4m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 6 

1 

8544 3.6893 4.0318 4.4437 5.03 7.6427 

17088 3.6991 4.0318 4.4428 5.0195 7.6428 

34176 3.6991 4.0318 4.4526 5.03 7.633 

2 

4272 3.6991 4.0318 4.4428 5.03 7.6428 

8544 3.6991 4.0318 4.4428 5.03 7.6372 

17088 3.6991 4.022 4.4428 5.0202 7.633 

3 

2136 3.6991 4.0299 4.4428 5.0378 7.633 

3418 3.6991 4.0318 4.4428 5.0202 7.633 

4272 3.6926 4.022 4.4526 5.0202 7.633 

8544 3.6903 4.0318 4.4428 5.0202 7.6372 

4 

2136 3.6991 4.0318 4.4526 5.0202 7.633 

3418 3.6893 4.022 4.4428 5.0244 7.633 

4272 3.6991 4.0318 4.4428 5.03 7.633 
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Table A.5 Optotrak results for test configuration 𝐻𝐻 = 1.35m and 𝐵𝐵 = 4m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 6 

1 

8544 3.6991 4.0318 4.4437 5.03 7.6428 

17088 3.6991 4.0318 4.4526 5.0289 7.6428 

34176 3.6991 4.0318 4.4526 5.03 7.6428 

2 

4272 3.6991 4.0318 4.4526 5.03 7.6428 

8544 3.6991 4.0318 4.4526 5.03 7.6371 

17088 3.6991 4.0318 4.4428 5.03 7.633 

3 

2136 3.6991 4.0297 4.4526 5.0263 7.633 

3418 3.6991 4.0318 4.4526 5.03 7.633 

4272 3.7021 4.0318 4.4526 5.03 7.633 

8544 3.7044 4.0318 4.4428 5.03 7.6371 

4 

2136 3.6991 4.0318 4.4428 5.03 7.6428 

3418 3.6991 4.0318 4.4428 5.0243 7.633 

4272 3.6991 4.0318 4.4428 5.03 7.633 
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Table A.6 GBL results for test configuration 𝐻𝐻 = 1.35m and 𝐵𝐵 = 4m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration 

1 2 3 4 6 

1 

8544 3.6989 4.0217 4.4432 5.0298 7.6426 

17088 3.6982 4.0316 4.4521 5.0283 7.6419 

34176 3.698 4.0303 4.4509 5.029 7.6411 

2 

4272 3.6988 4.0315 4.4522 5.0199 7.6426 

8544 3.6986 4.0317 4.452 5.0295 7.6363 

17088 3.698 4.0309 4.4506 5.0278 7.6311 

3 

2136 3.6989 4.0298 4.4524 5.0262 7.6327 

3418 3.6985 4.022 4.4422 5.0297 7.623 

4272 3.7018 4.0313 4.4519 5.0296 7.6319 

8544 3.7047 4.03 4.4425 5.0294 7.6378 

4 

2136 3.6985 4.0315 4.4423 5.0296 7.6421 

3418 3.6985 4.0305 4.4411 5.0241 7.6306 

4272 3.7076 4.0299 4.4425 5.0295 7.6411 
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Table A.7 Accelerometer results for test configuration 𝐻𝐻 = 0.57m and 𝐵𝐵 = 8m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 5 6 

1 

8544 3.7098 4.036 4.4824 5.0575 5.999 7.651 

17088 3.7136 4.0345 4.4699 5.0609 6.0041 7.6435 

34176 3.7126 4.0359 4.4748 5.0578 6.0012 7.6486 

2 

4272 3.7089 4.0393 4.478 5.0601 6.0058 7.6499 

8544 3.7169 4.0391 4.4779 5.0553 5.9981 7.6475 

17088 3.7154 4.0406 4.4771 5.0478 5.9994 7.6418 

3 

2136 3.7054 4.0452 4.4861 5.0574 6 7.6427 

3418 3.7115 4.041 4.4686 5.0582 6.0038 7.6402 

4272 3.7125 4.0413 4.4731 5.055 5.9943 7.649 

8544 3.7128 4.0432 4.481 5.0561 5.9996 7.6466 

4 

2136 3.7084 4.0384 4.4723 5.0613 6.0008 7.648 

3418 3.7029 4.0419 4.4746 5.0519 5.9951 7.6454 

4272 3.7086 4.0378 4.4669 5.0558 6.0009 7.6372 
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Table A.8 Optotrak results for test configuration 𝐻𝐻 = 0.57m and 𝐵𝐵 = 8m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 5 6 

1 

8544 3.7096 4.036 4.4722 5.0573 5.9989 7.6506 

17088 3.7136 4.0344 4.4698 5.0607 6.0038 7.6534 

34176 3.7126 4.0358 4.4747 5.0575 6.0011 7.6484 

2 

4272 3.7089 4.0392 4.478 5.0601 6.0058 7.65 

8544 3.707 4.039 4.4778 5.0554 5.9981 7.6471 

17088 3.7155 4.0406 4.4771 5.0578 5.9992 7.6516 

3 

2136 3.7054 4.045 4.4758 5.0575 5.9998 7.6528 

3418 3.7113 4.041 4.4785 5.0582 6.0039 7.65 

4272 3.7125 4.0414 4.473 5.055 6.0042 7.6486 

8544 3.7126 4.0433 4.4709 5.0562 5.9997 7.6467 

4 

2136 3.7083 4.0382 4.4724 5.051 6.0009 7.6478 

3418 3.7131 4.0417 4.4746 5.0518 6.005 7.6453 

4272 3.7086 4.0376 4.4768 5.0557 6.0006 7.6472 
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Table A.9 GBL results for test configuration 𝐻𝐻 = 0.57m and 𝐵𝐵 = 8m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 5 6 

1 

8544 3.7095 4.0465 4.4719 5.0576 6.0089 7.6609 

17088 3.7135 4.0347 4.4701 5.0601 6.0036 7.6529 

34176 3.7116 4.0362 4.4748 5.0568 6.0004 7.6491 

2 

4272 3.7086 4.0394 4.4778 5.0599 6.0057 7.6599 

8544 3.7073 4.0389 4.4774 5.0546 5.9982 7.6477 

17088 3.7146 4.0394 4.4773 5.0574 5.9999 7.6525 

3 

2136 3.7053 4.0352 4.4759 5.0571 6.0101 7.6522 

3418 3.7111 4.0312 4.4782 5.0584 6.0039 7.65 

4272 3.7119 4.0415 4.4728 5.0548 6.0033 7.6486 

8544 3.7116 4.0434 4.4799 5.0556 6.0096 7.6454 

4 

2136 3.7078 4.0382 4.472 5.0513 6 7.6478 

3418 3.7131 4.041 4.4742 5.0511 6.0054 7.6459 

4272 3.7086 4.0375 4.4771 5.0547 6.0009 7.6461 
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Table A.10 Accelerometer results for test configuration 𝐻𝐻 = 1.35m and 𝐵𝐵 = 8m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 6 

1 

8544 3.7046 4.0334 4.4565 5.0506 7.6526 

17088 3.7073 4.0416 4.4624 5.0593 7.6624 

34176 3.7073 4.0416 4.4526 5.0495 7.6526 

2 

4272 3.7089 4.0335 4.4526 5.0537 7.6526 

8544 3.711 4.0416 4.4624 5.0457 7.6428 

17088 3.7044 4.0327 4.4572 5.0421 7.6526 

3 

2136 3.7126 4.0364 4.4624 5.0558 7.6526 

3418 3.7126 4.0435 4.4624 5.0495 7.6457 

4272 3.7096 4.0349 4.4624 5.0495 7.6624 

8544 3.6983 4.0304 4.4582 5.0448 7.6428 

4 

2136 3.705 4.0335 4.4616 5.0517 7.6526 

3418 3.7075 4.0443 4.445 5.0495 7.6526 

4272 3.7003 4.0459 4.4549 5.0495 7.6526 
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Table A.11 Optotrak results for test configuration 𝐻𝐻 = 1.35m and 𝐵𝐵 = 8m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 6 

1 

8544 3.7143 4.0333 4.4566 5.0503 7.6526 

17088 3.7173 4.0318 4.4624 5.0495 7.6526 

34176 3.7072 4.0318 4.4624 5.0495 7.6526 

2 

4272 3.7089 4.0334 4.4624 5.0534 7.6526 

8544 3.711 4.0416 4.4624 5.0556 7.6526 

17088 3.7143 4.0327 4.4572 5.0518 7.6526 

3 

2136 3.7126 4.0363 4.4624 5.0456 7.6526 

3418 3.7124 4.0334 4.4624 5.0495 7.6554 

4272 3.7096 4.0348 4.4624 5.0495 7.6526 

8544 3.7092 4.0403 4.4583 5.0546 7.6526 

4 

2136 3.7049 4.0335 4.4615 5.0516 7.6526 

3418 3.7074 4.0442 4.4587 5.0495 7.6526 

4272 3.71 4.0459 4.4548 5.0495 7.6526 
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Table A.12 GBL results for test configuration 𝐻𝐻 = 1.35m and 𝐵𝐵 = 8m 

Quality 

Resolution 

(No. of 

Points) 

Natural Frequency [Hz] 

Structural Configuration  

1 2 3 4 6 

1 

8544 3.7143 4.0331 4.4567 5.0506 7.6618 

17088 3.7168 4.031 4.4617 5.0487 7.6522 

34176 3.7063 4.03 4.4605 5.0582 7.6497 

2 

4272 3.7185 4.0434 4.4621 5.0534 7.6524 

8544 3.7111 4.0315 4.4521 5.0457 7.6613 

17088 3.7137 4.0324 4.4561 5.0512 7.6615 

3 

2136 3.7123 4.0363 4.4622 5.0559 7.652 

3418 3.7127 4.0337 4.4622 5.0492 7.6451 

4272 3.7097 4.0347 4.4622 5.0492 7.6516 

8544 3.709 4.0301 4.4569 5.0546 7.6506 

4 

2136 3.7144 4.0428 4.461 5.0512 7.6512 

3418 3.7076 4.0436 4.4566 5.0489 7.652 

4272 3.7095 4.0463 4.4541 5.0474 7.6508 
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